Statistical correlations in a Coulomb gas with a test charge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41332002
(http://iopscience.iop.org/1751-8121/41/33/332002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.150
The article was downloaded on 03/06/2010 at 07:06

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Statistical correlations in a Coulomb gas with a test charge

Henning Schomerus

Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
Received 16 June 2008, in final form 27 June 2008
Published 17 July 2008
Online at stacks.iop.org/JPhysA/41/332002

Abstract

A recent paper (Jokela et al 2008 Preprint arXiv:0806.1491) contains a surmise about an expectation value in a Coulomb gas which interacts with an additional charge ξ that sits at a fixed position. Here, I demonstrate the validity of the surmised expression and extend it to a certain class of higher cumulants. The calculation is based on the analogy to statistical averages in the circular unitary ensemble of random-matrix theory and exploits properties of orthogonal polynomials on the unit circle.

PACS numbers: $02.50 . \mathrm{Sk}, 05.20 .-\mathrm{y}, 05.30 . \mathrm{Fk}, 05.45 . \mathrm{Mt}$

1. Purpose and result

In a recent paper Jokela, Järvinen and Keski-Vakkuri studied n-point functions in timelike boundary Liouville theory via the analogy to a Coulomb gas on a unit circle [1]. In this analogy, N unit charges at position t_{i} interact with additional charges of integer value ξ_{a}, situated at position τ_{a}. To illustrate this technique the authors of [1] considered the canonical expectation value

$$
\begin{equation*}
\langle\cdot\rangle \equiv \frac{1}{Z} \int \prod_{i=1}^{N} \frac{\mathrm{~d} t_{i}}{2 \pi} \prod_{i<j}\left|\mathrm{e}^{\mathrm{i} t_{i}}-\mathrm{e}^{\mathrm{i} t_{j}}\right|^{2} \prod_{i}\left|\mathrm{e}^{\mathrm{i} \tau}-\mathrm{e}^{\mathrm{i} t_{i}}\right|^{2 \xi}(\cdot) \tag{1}
\end{equation*}
$$

(where Z is a normalization factor so that $\langle 1\rangle=1$) and surmised that

$$
\begin{equation*}
\left\langle\operatorname{Re} a_{1}\right\rangle \equiv\left\langle\sum_{i} \cos \left(\tau-t_{i}\right)\right\rangle=-\frac{\xi N}{N+\xi} \tag{2}
\end{equation*}
$$

In this communication I demonstrate the validity of (2) and also compute expectation values of the more general quantities

$$
\begin{equation*}
a_{n} \equiv \sum_{i_{1}<i_{2}<\cdots<i_{n}} \exp \left(\mathrm{i} \sum_{k=1}^{n}\left(t_{i_{k}}-\tau\right)\right) \tag{3}
\end{equation*}
$$

As a result, I find

$$
\begin{equation*}
\left\langle a_{n}\right\rangle=(-1)^{n} \frac{(N-n+1)^{(\xi)}(n+1)^{(\xi-1)}}{(N+1)^{(\xi)}(1)^{(\xi-1)}} \quad \forall \quad n=1,2, \ldots, N, \quad \xi \geqslant 0, \tag{4}
\end{equation*}
$$

where $(x)^{(y)}=\Gamma(x+y) / \Gamma(x)$ is the generalized rising factorial (Pochhammer symbol). In particular, the validity of (2) follows from (4) by setting $n=1$.

Expression (4) will be obtained by relating the generating polynomial

$$
\begin{equation*}
\varphi_{N, \xi}(\lambda) \equiv \sum_{n=0}^{N}\left\langle a_{n}\right\rangle(-\lambda)^{N-n} \tag{5}
\end{equation*}
$$

to a weighted average of the secular polynomial in the circular unitary ensemble (CUE). This in turn establishes a relation to the Szegő polynomial of a Toeplitz matrix composed of binomial coefficients. This calculation sidesteps Jack polynomials and generalized Selberg integrals, which can be used to tackle general expectation values in multicomponent Coulomb gases [2].

2. Reformulation in terms of random matrices

The CUE is composed of $(N \times N)$-dimensional unitary matrices U distributed according to the Haar measure. Identify t_{i} with the eigenphases of such a matrix. The joint probability distribution is then given by [3]

$$
\begin{equation*}
P\left(\left\{t_{i}\right\}_{i=1}^{N}\right)=z \prod_{i<j}\left|\mathrm{e}^{\mathrm{i} i_{i}}-\mathrm{e}^{\mathrm{i} t_{j}}\right|^{2}, \tag{6}
\end{equation*}
$$

where z is again a normalization constant. This expression can also be written as the product of two Vandermonde determinants $\operatorname{det} V^{+} \operatorname{det} V^{-}$with matrices $V_{l m}^{\sigma}=\mathrm{e}^{\mathrm{i} \sigma(m-1) t_{t}}$. Furthermore, we can write

$$
\begin{equation*}
\prod_{i}\left|\mathrm{e}^{\mathrm{i} \tau}-\mathrm{e}^{\mathrm{i} i_{i}}\right|^{2 \xi}=\left[\operatorname{det}\left(1-U \mathrm{e}^{-\mathrm{i} \tau}\right) \operatorname{det}\left(1-U^{\dagger} \mathrm{e}^{\mathrm{i} \tau}\right)\right]^{\xi} \tag{7}
\end{equation*}
$$

Finally, the expressions a_{n} in (3) arise as the expansion coefficients of the secular polynomial

$$
\begin{equation*}
\operatorname{det}\left(U \mathrm{e}^{-\mathrm{i} \tau}-\lambda\right)=\sum_{n=0}^{N} a_{n}(-\lambda)^{N-n} . \tag{8}
\end{equation*}
$$

Note that in all these expressions τ can be shifted to any fixed value by a uniform shift of all t_{i} 's, which leaves the unitary ensemble invariant. Therefore, the expectation values are independent of τ. Collecting all results, we have the identity

$$
\begin{equation*}
\varphi_{N, \xi}(\lambda)=\frac{\left\langle\left[\operatorname{det}(1-U) \operatorname{det}\left(1-U^{\dagger}\right)\right]^{\xi} \operatorname{det}(U-\lambda)\right\rangle_{\mathrm{CUE}}}{\left\langle\left[\operatorname{det}(1-U) \operatorname{det}\left(1-U^{\dagger}\right)\right]^{\xi}\right\rangle_{\mathrm{CUE}}} . \tag{9}
\end{equation*}
$$

This can be interpreted as a weighted average of the secular polynomial in the CUE.

3. Random-matrix average

Statistical properties of the secular polynomial without the weight factor $(\xi=0)$ have been considered in [4]. Clearly, $\varphi_{N, 0}=(-\lambda)^{N}$, so that in this case the attention quickly moves on to higher moments of a_{n}. The main technical observation in [4] which allows us to address the case of finite ξ concerns averages of expressions $g\left(\left\{t_{i}\right\}_{i=1}^{N}\right)$ that are completely symmetric in all eigenphases. In this situation the average can be found via

$$
\begin{equation*}
\left\langle g\left(\left\{t_{i}\right\}_{i=1}^{N}\right)\right\rangle_{\mathrm{CUE}}=\int \prod_{i} \frac{\mathrm{~d} t_{i}}{2 \pi} g\left(\left\{t_{l}\right\}_{l=1}^{N}\right) \operatorname{det} W, \tag{10}
\end{equation*}
$$

where $W_{l m}=\mathrm{e}^{\mathrm{i}_{t_{m}}(l-m)}$. Equation (10) is simpler than the general expression involving the product of two Vandermonde matrices, since each eigenphase only appears in a single column of W.

In the present problem, the numerator in (9) is represented by the completely symmetric function

$$
\begin{equation*}
g_{1}\left(\left\{t_{i}\right\}_{i=1}^{N}\right)=\prod_{i=1}^{N}\left[\left(\mathrm{e}^{\mathrm{i} t_{i}}-\lambda\right)\left(1-\mathrm{e}^{\mathrm{i} t_{i}}\right)^{\xi}\left(1-\mathrm{e}^{-\mathrm{i} t_{i}}\right)^{\xi}\right] \tag{11}
\end{equation*}
$$

while for the denominator we need to consider the similar expression

$$
\begin{equation*}
g_{2}\left(\left\{t_{i}\right\}_{i=1}^{N}\right)=\prod_{i=1}^{N}\left[\left(1-\mathrm{e}^{\mathrm{i} t_{i}}\right)^{\xi}\left(1-\mathrm{e}^{-\mathrm{i} t_{i}}\right)^{\xi}\right] . \tag{12}
\end{equation*}
$$

Using the multilinearity of the determinant we can now pull each factor into the i th column and perform the integrals. This delivers the representation

$$
\begin{equation*}
\varphi_{N, \xi}(\lambda)=\frac{\operatorname{det}(B-\lambda A)}{\operatorname{det} A} \tag{13}
\end{equation*}
$$

where the matrices $A_{l m}=(-1)^{l-m}\binom{2 \xi}{(\xi+l-m}, B_{l m}=(-1)^{l-m+1}\binom{2 \xi}{\xi+l-m+1}$ have entries given by binomial coefficients. We now exploit the regular structure of these matrices in two steps.
(i) Matrix B contains the same entries as matrix A, but shifted to the left by one column index. In order to exploit this, let us expand the determinant in the numerator into a sum of determinants of matrices labeled by $X=\left(x_{m}\right)_{m=1}^{N}$, where we select each column either from $A\left(x_{m}=\mathrm{A}\right)$ or from $B\left(x_{m}=\mathrm{B}\right)$. (Note that we set these symbols in roman letters.) The related structure of A and B then entails that $\operatorname{det} X$ vanishes if X contains a subsequence $\left(x_{m}, x_{m+1}\right)=(\mathrm{A}, \mathrm{B})$. Consequently we only need to consider determinants of matrices $X_{n} \equiv(\mathrm{~B})_{m=1}^{n} \oplus(\mathrm{~A})_{m=n+1}^{N}$, associated with sequences that contain n leading B's and $N-n$ trailing A's. As A is multiplied by $-\lambda$, $\operatorname{det} X_{n}$ contributes to order $(-\lambda)^{N-n}$. (Note that $X_{0}=A$ and $X_{N}=B$.)
(ii) Next, consider the matrix A_{N+1}, where the subscript denotes the dimension, and strike out the first row and the $n+1$ st column $(n=0,1,2, \ldots, N)$. This takes exactly the form of the matrix X_{n} of dimension N. Therefore, the expressions $(-1)^{n} \operatorname{det} X_{n}$ are the cofactors of the first row of A_{N+1}. These, in turn, are proportional to the first column of A_{N+1}^{-1}, where the proportionality factor is given by $\operatorname{det} A_{N+1}$. Consequently, taking care of all alternating signs,

$$
\begin{equation*}
\varphi_{N, \xi}(\lambda)=(-1)^{N} \frac{\operatorname{det} A_{N+1}}{\operatorname{det} A_{N}} \sum_{n=0}^{N}\left(A_{N+1}^{-1}\right)_{1,1+n} \lambda^{N-n} . \tag{14}
\end{equation*}
$$

Via steps (i) and (ii) we have eliminated any reference to the matrix B.

4. Orthogonal polynomials

Matrix A is a Toeplitz matrix, $A_{l m}=c_{l-m}$. In order to find the explicit expression (4) we now make contact to the theory of orthogonal polynomials on the unit circle [5]. Among its many applications, this theory provides a general expression for the inverse of any Toeplitz matrix in terms of Szegő polynomials $\psi_{N}(\lambda)$. For the case of real symmetric coefficients, the inverse is generated via

$$
\begin{equation*}
\frac{\lambda \mu^{N} \psi_{N}(\lambda) \psi_{N}\left(\mu^{-1}\right)-\lambda^{N} \mu \psi_{N}\left(\lambda^{-1}\right) \psi_{N}(\mu)}{\lambda-\mu}=\frac{\operatorname{det} A_{N+1}}{\operatorname{det} A_{N}} \sum_{n, m=0}^{N}\left(A_{N+1}^{-1}\right)_{m+1, n+1} \lambda^{N-n} \mu^{m} \tag{15}
\end{equation*}
$$

Comparison of this equation with $m=0$ to (14) immediately leads to the identification of $(-1)^{N} \varphi_{N, \xi}(\lambda)$ with the Szegó polynomial $\psi_{N}(\lambda)$ of degree N. These polynomials satisfy recursion relations which for real symmetric coefficients take the form

$$
\begin{align*}
& \gamma_{N}=-\frac{1}{\delta_{N-1}} \oint \frac{\mathrm{~d} \lambda}{2 \pi \mathrm{i}} \psi_{N-1}(\lambda) \sum_{n=-\infty}^{\infty} c_{n} \lambda^{n} \tag{16a}\\
& \psi_{N}(\lambda)=\lambda \psi_{N-1}(\lambda)+\gamma_{N} \lambda^{N-1} \psi_{N-1}\left(\lambda^{-1}\right), \tag{16b}\\
& \delta_{N}=\delta_{N-1}\left(1-\gamma_{N}^{2}\right) \tag{16c}
\end{align*}
$$

The initial conditions are $\delta_{0}=c_{0}, \psi_{0}(\lambda)=1$. The numbers γ_{N} are known as the Schur or Verblunsky coefficients.

It can now be seen in an explicit if tedious calculation that the polynomials

$$
\begin{align*}
\psi_{N}(\lambda) & =(-1)^{N} \varphi_{N, \xi}(\lambda)=\sum_{n=0}^{N} \frac{(N-n+1)^{(\xi)}(n+1)^{(\xi-1)}}{(N+1)^{(\xi)}(1)^{(\xi-1)}} \lambda^{N-n} \tag{17a}\\
& =\lambda^{N}{ }_{2} F_{1}\left(-N, \xi ;-N-\xi ; \lambda^{-1}\right) \tag{17b}
\end{align*}
$$

(with coefficients and expansion given in (4) and (5)) indeed fulfil the Szegő recursion generated by the binomial coefficients $c_{n}=(-1)^{n}\binom{2 \xi}{\xi-n}$. The recursion coefficients take the simple form

$$
\begin{equation*}
\gamma_{N}=\frac{\xi}{\xi+N}, \quad \delta_{N}=\frac{N!(2 \xi+1)^{(N)}}{\left[(\xi+1)^{(N)}\right]^{2}} \tag{17c}
\end{equation*}
$$

This completes the proof of (4) and also entails the validity of (2).

Acknowledgments

The author wishes to thank Niko Jokela, Matti Järvinen and Esko Keski-Vakkuri for useful correspondence regarding [1], and Mitsuhiro Arikawa and Peter Forrester for useful communications about [2]. This work was supported by the European Commission, Marie Curie Excellence Grant MEXT-CT-2005-023778 (Nanoelectrophotonics).

References

[1] Jokela N, Järvinen M and Keski-Vakkuri E 2008 Preprint arXiv:0806.1491
[2] Forrester P J 1992 J. Phys. A: Math. Gen. 25 L607
Forrester P J 1992 Nucl. Phys. B 388671
[3] Mehta M L 1991 Random Matrices 2nd edn (New York: Academic)
[4] Haake F, Kuś M, Sommers H-J, Schomerus H and Życzkowski K 1996 J. Phys. A: Math. Gen. 293641
[5] Simon B 2005 Orthogonal Polynomials on the Unit Circle: Part 1. Classical Theory; Part 2: Spectral Theory (Providence, RI: American Mathematical Society)

