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Abstract
A recent paper (Jokela et al 2008 Preprint arXiv:0806.1491) contains a surmise
about an expectation value in a Coulomb gas which interacts with an additional
charge ξ that sits at a fixed position. Here, I demonstrate the validity of
the surmised expression and extend it to a certain class of higher cumulants.
The calculation is based on the analogy to statistical averages in the circular
unitary ensemble of random-matrix theory and exploits properties of orthogonal
polynomials on the unit circle.

PACS numbers: 02.50.Sk, 05.20.−y, 05.30.Fk, 05.45.Mt

1. Purpose and result

In a recent paper Jokela, Järvinen and Keski-Vakkuri studied n-point functions in timelike
boundary Liouville theory via the analogy to a Coulomb gas on a unit circle [1]. In this
analogy, N unit charges at position ti interact with additional charges of integer value ξa ,
situated at position τa . To illustrate this technique the authors of [1] considered the canonical
expectation value

〈·〉 ≡ 1

Z

∫ N∏
i=1

dti

2π

∏
i<j

|eiti − eitj |2
∏

i

|eiτ − eiti |2ξ (·) (1)

(where Z is a normalization factor so that 〈1〉 = 1) and surmised that

〈Re a1〉 ≡
〈∑

i

cos(τ − ti)

〉
= − ξN

N + ξ
. (2)

In this communication I demonstrate the validity of (2) and also compute expectation
values of the more general quantities

an ≡
∑

i1<i2<···<in

exp

(
i

n∑
k=1

(tik − τ)

)
. (3)

1751-8113/08/332002+04$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/33/332002
http://stacks.iop.org/JPhysA/41/332002


J. Phys. A: Math. Theor. 41 (2008) 332002 Fast Track Communication

As a result, I find

〈an〉 = (−1)n
(N − n + 1)(ξ)(n + 1)(ξ−1)

(N + 1)(ξ)(1)(ξ−1)
∀ n = 1, 2, . . . , N, ξ � 0, (4)

where (x)(y) = �(x + y)/�(x) is the generalized rising factorial (Pochhammer symbol). In
particular, the validity of (2) follows from (4) by setting n = 1.

Expression (4) will be obtained by relating the generating polynomial

ϕN,ξ (λ) ≡
N∑

n=0

〈an〉(−λ)N−n (5)

to a weighted average of the secular polynomial in the circular unitary ensemble (CUE). This in
turn establishes a relation to the Szeg ′′o polynomial of a Toeplitz matrix composed of binomial
coefficients. This calculation sidesteps Jack polynomials and generalized Selberg integrals,
which can be used to tackle general expectation values in multicomponent Coulomb gases [2].

2. Reformulation in terms of random matrices

The CUE is composed of (N × N)-dimensional unitary matrices U distributed according to
the Haar measure. Identify ti with the eigenphases of such a matrix. The joint probability
distribution is then given by [3]

P
({ti}Ni=1

) = z
∏
i<j

|eiti − eitj |2, (6)

where z is again a normalization constant. This expression can also be written as the product of
two Vandermonde determinants det V + det V − with matrices V σ

lm = eiσ(m−1)tl . Furthermore,
we can write ∏

i

|eiτ − eiti |2ξ = [det(1 − U e−iτ ) det(1 − U † eiτ )]ξ . (7)

Finally, the expressions an in (3) arise as the expansion coefficients of the secular polynomial

det(U e−iτ − λ) =
N∑

n=0

an(−λ)N−n. (8)

Note that in all these expressions τ can be shifted to any fixed value by a uniform shift of
all ti’s, which leaves the unitary ensemble invariant. Therefore, the expectation values are
independent of τ . Collecting all results, we have the identity

ϕN,ξ (λ) = 〈[det(1 − U) det(1 − U †)]ξ det(U − λ)〉CUE

〈[det(1 − U) det(1 − U †)]ξ 〉CUE
. (9)

This can be interpreted as a weighted average of the secular polynomial in the CUE.

3. Random-matrix average

Statistical properties of the secular polynomial without the weight factor (ξ = 0) have been
considered in [4]. Clearly, ϕN,0 = (−λ)N , so that in this case the attention quickly moves on
to higher moments of an. The main technical observation in [4] which allows us to address
the case of finite ξ concerns averages of expressions g

({ti}Ni=1

)
that are completely symmetric

in all eigenphases. In this situation the average can be found via〈
g
({ti}Ni=1

)〉
CUE =

∫ ∏
i

dti

2π
g
({tl}Nl=1

)
det W, (10)
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where Wlm = eitm(l−m). Equation (10) is simpler than the general expression involving the
product of two Vandermonde matrices, since each eigenphase only appears in a single column
of W .

In the present problem, the numerator in (9) is represented by the completely symmetric
function

g1
({ti}Ni=1

) =
N∏

i=1

[(eiti − λ)(1 − eiti )ξ (1 − e−iti )ξ ], (11)

while for the denominator we need to consider the similar expression

g2
({ti}Ni=1

) =
N∏

i=1

[(1 − eiti )ξ (1 − e−iti )ξ ]. (12)

Using the multilinearity of the determinant we can now pull each factor into the ith column
and perform the integrals. This delivers the representation

ϕN,ξ (λ) = det(B − λA)

det A
, (13)

where the matrices Alm = (−1)l−m
( 2ξ

ξ+l−m

)
, Blm = (−1)l−m+1

( 2ξ

ξ+l−m+1

)
have entries given by

binomial coefficients. We now exploit the regular structure of these matrices in two steps.

(i) Matrix B contains the same entries as matrix A, but shifted to the left by one column
index. In order to exploit this, let us expand the determinant in the numerator into a
sum of determinants of matrices labeled by X = (xm)Nm=1, where we select each column
either from A (xm = A) or from B (xm = B). (Note that we set these symbols in roman
letters.) The related structure of A and B then entails that det X vanishes if X contains a
subsequence (xm, xm+1) = (A, B). Consequently we only need to consider determinants
of matrices Xn ≡ (B)nm=1 ⊕ (A)Nm=n+1, associated with sequences that contain n leading
B’s and N−n trailing A’s. As A is multiplied by −λ, det Xn contributes to order (−λ)N−n.
(Note that X0 = A and XN = B.)

(ii) Next, consider the matrix AN+1, where the subscript denotes the dimension, and strike out
the first row and the n + 1st column (n = 0, 1, 2, . . . , N). This takes exactly the form of
the matrix Xn of dimension N. Therefore, the expressions (−1)n det Xn are the cofactors
of the first row of AN+1. These, in turn, are proportional to the first column of A−1

N+1,
where the proportionality factor is given by det AN+1. Consequently, taking care of all
alternating signs,

ϕN,ξ (λ) = (−1)N
det AN+1

det AN

N∑
n=0

(
A−1

N+1

)
1,1+n

λN−n. (14)

Via steps (i) and (ii) we have eliminated any reference to the matrix B.

4. Orthogonal polynomials

Matrix A is a Toeplitz matrix, Alm = cl−m. In order to find the explicit expression (4) we now
make contact to the theory of orthogonal polynomials on the unit circle [5]. Among its many
applications, this theory provides a general expression for the inverse of any Toeplitz matrix
in terms of Szeg ′′o polynomials ψN(λ). For the case of real symmetric coefficients, the inverse
is generated via

λµNψN(λ)ψN(µ−1) − λNµψN(λ−1)ψN(µ)

λ − µ
= det AN+1

det AN

N∑
n,m=0

(
A−1

N+1

)
m+1,n+1λ

N−nµm.

(15)
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Comparison of this equation with m = 0 to (14) immediately leads to the identification of
(−1)NϕN,ξ (λ) with the Szeg ′′o polynomial ψN(λ) of degree N. These polynomials satisfy
recursion relations which for real symmetric coefficients take the form

γN = − 1

δN−1

∮
dλ

2π i
ψN−1(λ)

∞∑
n=−∞

cnλ
n, (16a)

ψN(λ) = λψN−1(λ) + γNλN−1ψN−1(λ
−1), (16b)

δN = δN−1
(
1 − γ 2

N

)
. (16c)

The initial conditions are δ0 = c0, ψ0(λ) = 1. The numbers γN are known as the Schur or
Verblunsky coefficients.

It can now be seen in an explicit if tedious calculation that the polynomials

ψN(λ) = (−1)NϕN,ξ (λ) =
N∑

n=0

(N − n + 1)(ξ)(n + 1)(ξ−1)

(N + 1)(ξ)(1)(ξ−1)
λN−n (17a)

= λN
2F1(−N, ξ ;−N − ξ ; λ−1) (17b)

(with coefficients and expansion given in (4) and (5)) indeed fulfil the Szeg ′′o recursion generated
by the binomial coefficients cn = (−1)n

( 2ξ

ξ−n

)
. The recursion coefficients take the simple form

γN = ξ

ξ + N
, δN = N !(2ξ + 1)(N)

[(ξ + 1)(N)]2
. (17c)

This completes the proof of (4) and also entails the validity of (2).
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