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Abstract

A recent paper (Jokela er al 2008 Preprint arXiv:0806.1491) contains a surmise
about an expectation value in a Coulomb gas which interacts with an additional
charge & that sits at a fixed position. Here, I demonstrate the validity of
the surmised expression and extend it to a certain class of higher cumulants.
The calculation is based on the analogy to statistical averages in the circular
unitary ensemble of random-matrix theory and exploits properties of orthogonal
polynomials on the unit circle.

PACS numbers: 02.50.Sk, 05.20.—y, 05.30.Fk, 05.45.Mt

1. Purpose and result

In a recent paper Jokela, Jarvinen and Keski-Vakkuri studied n-point functions in timelike
boundary Liouville theory via the analogy to a Coulomb gas on a unit circle [1]. In this
analogy, N unit charges at position #; interact with additional charges of integer value &,,
situated at position 7,. To illustrate this technique the authors of [1] considered the canonical
expectation value

1 N dy; . . . .
() = _/1_[_1_[|elt; _elt/-|21_[|el‘[ _elt, 2&'() (1)
z i=1 2 i

i<j

(where Z is a normalization factor so that (1) = 1) and surmised that

N
(Rea;) = <Zcos(r - r,-)> = —Nig. (2)

In this communication I demonstrate the validity of (2) and also compute expectation
values of the more general quantities

a, = Z exp (an:(z‘ik — r)) . 3)

i) <ip<-<iy k=1
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As aresult, I find

SN =—n+D®n+1)ED
<ai’l) _(_1) (N+l)($)(l)(sil) v n = 172""’N1 s 205 (4)
where (x)®) = I'(x + y)/'(x) is the generalized rising factorial (Pochhammer symbol). In
particular, the validity of (2) follows from (4) by settingn = 1.
Expression (4) will be obtained by relating the generating polynomial
N
on M) =Y la) (=) )
n=0

to a weighted average of the secular polynomial in the circular unitary ensemble (CUE). This in
turn establishes a relation to the Szegd polynomial of a Toeplitz matrix composed of binomial
coefficients. This calculation sidesteps Jack polynomials and generalized Selberg integrals,
which can be used to tackle general expectation values in multicomponent Coulomb gases [2].

2. Reformulation in terms of random matrices

The CUE is composed of (N x N)-dimensional unitary matrices U distributed according to
the Haar measure. Identify #; with the eigenphases of such a matrix. The joint probability
distribution is then given by [3]

N it it |2
P({t)iy) = Zl_[ le" — e[, (6)
i<j
where z is again a normalization constant. This expression can also be written as the product of

two Vandermonde determinants det V* det V~ with matrices V), = eiotm=bu - Fyrthermore,
we can write

]_[ le'” —e|% = [det(l — Ue ")det(l — U'e™)J. (7)
Finally, the expressions a,, in (3) arise as the expansion coefficients of the secular polynomial

N
det(Ue ™™™ — 1) = Z an(—)N ", (8)
n=0

Note that in all these expressions T can be shifted to any fixed value by a uniform shift of
all ¢;’s, which leaves the unitary ensemble invariant. Therefore, the expectation values are
independent of 7. Collecting all results, we have the identity
([det(1 — U) det(1 — U)]¥ det(U — A))cug

([det(1 — U) det(1 — UN¥)cur
This can be interpreted as a weighted average of the secular polynomial in the CUE.

one(A) = 9)

3. Random-matrix average

Statistical properties of the secular polynomial without the weight factor (§ = 0) have been
considered in [4]. Clearly, gy o = (—=2)", so that in this case the attention quickly moves on
to higher moments of a,. The main technical observation in [4] which allows us to address
the case of finite £ concerns averages of expressions g({ti i 1) that are completely symmetric
in all eigenphases. In this situation the average can be found via

dy;
({06 e = [ T 5meltn) deuw. 10
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where W;,, = e~ Equation (10) is simpler than the general expression involving the

product of two Vandermonde matrices, since each eigenphase only appears in a single column
of W.

In the present problem, the numerator in (9) is represented by the completely symmetric
function

N
gi({thl)) = [ Jre" —na — e (1 —e )], (11)
i=1
while for the denominator we need to consider the similar expression

N
o)) = [Jra —efa —e ™). (12)
i=1
Using the multilinearity of the determinant we can now pull each factor into the ith column
and perform the integrals. This delivers the representation

0y = detB—4) -
Pne) = detA
where the matrices A, = (=1)/" (éf—m)’ By = (—1)I7m+! (E+]i§m+l) have entries given by

binomial coefficients. We now exploit the regular structure of these matrices in two steps.

(i) Matrix B contains the same entries as matrix A, but shifted to the left by one column
index. In order to exploit this, let us expand the determinant in the numerator into a
sum of determinants of matrices labeled by X = (x,,)¥_,, where we select each column
either from A (x,, = A) or from B (x,, = B). (Note that we set these symbols in roman
letters.) The related structure of A and B then entails that det X vanishes if X contains a
subsequence (x,,, X,+1) = (A, B). Consequently we only need to consider determinants
of matrices X, = (B)",_, ® (A)X_,,,, associated with sequences that contain n leading
B’sand N —n trailing A’s. As A is multiplied by —2, det X, contributes to order (—A)¥ ",
(Note that Xo = A and Xy = B.)

(i1) Next, consider the matrix A .1, where the subscript denotes the dimension, and strike out
the first row and the n + Ist column (n = 0, 1, 2, ..., N). This takes exactly the form of
the matrix X,, of dimension N. Therefore, the expressions (—1)" det X, are the cofactors
of the first row of Ay.;. These, in turn, are proportional to the first column of A;Ll,
where the proportionality factor is given by det Ay,;. Consequently, taking care of all
alternating signs,

N

detAN+1 1 _n
ons(A) = Fl)Nm D (A LAY (14

Via steps (i) and (ii) we have eliminated any reference to the matrix B.

4. Orthogonal polynomials

Matrix A is a Toeplitz matrix, A;, = ¢;—,. In order to find the explicit expression (4) we now
make contact to the theory of orthogonal polynomials on the unit circle [5]. Among its many
applications, this theory provides a general expression for the inverse of any Toeplitz matrix
in terms of Szegd polynomials ¥y (). For the case of real symmetric coefficients, the inverse
is generated via

MM Yy YN (™) = AWV gy DYy () det Ay i (

— A—l N—n m
)\,—LL detAN "

N+])m+1,n+l He-

m=0
(15)
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Comparison of this equation with m = 0 to (14) immediately leads to the identification of
(=D @y (1) with the Szegd polynomial ¥y (1) of degree N. These polynomials satisfy
recursion relations which for real symmetric coefficients take the form

1 dx =,
YN = _51\1_—1 2—m¢N71()\) n;oo )", (16a)
Yn (M) = An_ ) + yn AN gy 7, (16b)
Sy =dn-1(1—yy). (16¢)

The initial conditions are 8o = cg, ¥o(A) = 1. The numbers yy are known as the Schur or
Verblunsky coefficients.
It can now be seen in an explicit if tedious calculation that the polynomials

N
(N—=n+D®m+1)ED .
UG = (=Yg e(h) = 2_; wenomer > (17a)
=M"V,F| (=N, & —N — & 17" (17b)

(with coefficients and expansion given in (4) and (5)) indeed fulfil the Szegd recursion generated
by the binomial coefficients ¢, = (—1)" (;_En) The recursion coefficients take the simple form
& _ N!Q& + HMW

T &N AT LU

This completes the proof of (4) and also entails the validity of (2).

YN (17¢)
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